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1 Introduction

Competition through mutual inhibition appears in a wide variety of network designs, such as Rumelhart

and McClelland's interactive activation model [McClelland & Rumelhart 1981], Feldman and Ballard's

winner-take-all (WTA) networks [Feldman & Ballard 1982], and various competitive learning architec-

tures [Rumelhart & Zipser 1986], [Grossberg 1987], [Kohonen 1984], [Hecht-Nielsen 1987]. In this pa-

per we analyze a system with more complicated competitive dynamics than any of the preceding. The

system is DCPS, the Distributed Connectionist Production System [Touretzky & Hinton 1988]. DCPS is

a Boltzmann machine composed of five modules, as shown in Figure 1.

>>> Insert Figure I here. <<<

Visualization of the energy landscapes of some of these modules leads to a better intuitive understanding

of the model. Three visualization techniques are used in this paper. Subsequent analysis of the way

energy landscapes change as modules interact during an annealing search suggests ways in which the

search dynamics can be controlled, thereby improving the model's performance on difficult match cases.

The behavior of DCPS is complex because it contains two independent winner-take-all networks, called

rule space and bind space, which interact via their effects on two attentional components called clause

spaces. Clause spaces are instances of pullout networks [Mozer 1987], another type of competitive

architecptre which uses mutual inhibition but does not involve WTA dynamics. The clause spaces serve

as sources of evidential input to the two WTA nets, but are also controlled by those nets. Thus, unlike most

other competitive architectures, in DCPS the evidential input to a WTA net does not remain constant as

the network's state evolves. Rather, the present output of the WTA net helps to determine (stochastically)

which evidence will become visible to it in the future. This dynamic attentional mechanism is necessary

to allow the rule and bind spaces to work together, as explained in section 3.

In the following sections I will first describe the organization of distributed winner-take-all networks

and give a general characterization of their energy landscapes. This will be followed by a summary

of the way such networks are used in DCPS. Then I will consider in detail the energy landscapes of

DCPS' component modules during an annealing search, and use the previously mentioned visualization

techniques to explain why the model has trouble solving certain difficult match cases. Two techniques for

manipulating energy landscapes, "threshold growing" and "corner clipping," are proposed. Experiments

confirm that manipulation of energy landscapes during settling improves the model's performance with

no increase in computational demands.



2 Distributed Winner-Take-All Networks

A winner-take-all network uses relaxation to choose the strongest member of a set of competing hy-

potheses. Each unit in the network receives external excitation in proportion to the evidence supporting

its hypothesis. Simultaneously, all-pairs inhibitory connections allow each unit to suppress its rivals in

proportion to its own current activation level. The unit with the most support (highest initial activation)

receives the least inhibition, and so over time its activation level will increase toward the maximum value

while the outputs of rival units fall to zero.

In classical WTA networks a unit's output value is a continuous quantity that reflects its activation

level. DCPS implements a stochastic versium of winner-take-all dynamics using Boltzmann machines

[Hinton & Sejnowski 1986]. Boltzmann units have binary outputs, so there is no direct way for competin;,

units to communicate their activation levels. Howeve:, there are indirect ways. The amount of evidence

supporting a unit determines its energy gap, .2, which in turn determinc3 its probability of being active.

The network's degree of confidence in a hypothsis is reflected in the amount of time the unit spends in

the active state. Therefore a good approximation to strength of support can be obtained by representing

each hypothesis by a clique of k independent units looking at the evidence. The number of active units

in a clique reflects the strength of its hypothesis. The architecture just described is called a distributed

winner-take-all (DWTA) network, because its representation of hypotheses is distributed across multiple

units. DCPS uses a clique size k = 40.

One of the advantages of DWTAs is that they allow limited fan-in of individual hypothesis units, since

the entire space of evidence will still be amply covered by multiple units with overlapping receptive

fields. In DCPS, for example, a rule as a whole looks for evidence from 115 units in each clause space,

but individual rule units are restricted to looking at randomly-chosen 40 unit subsets of these 115 units.1

The fact that each member of the clique has a unique receptive field distinguishes this scheme from the
4 ensemble' Boltzmann machines of [Derthick & Tebelskis 1988].

The maximum amount of evidence a winning rule should be able to muster in each clause space is about

28 active units. Therefore, a single rule unit should see an average of (40/115) x 28 or 9.7 pieces of

evidence per clause. It is important to remember that this is only an expected value; the actual values

are binomially distributed about this mean, as shown in Figure 2. Therefore some rule units will see less

than the average amount of evidence; this variance has a significant impact on the choice of weights and

thresholds in the model. The probability that a rule unit sees exactly r units of evidence when 28 units

'By coincidence, rules are implemented as cliques of 40 units, and each rule unit looks at exactly 40 clause units in each

clause space. These two numbers are not required to be the same.
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an available is:
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>>> Insert Figure 2 here. <<<

One way to smooth out the variation caused by limited-size receptive fields is to introduce excitatory

connections between rule units in the same clique. This way, if a particular unit receives below average

evidence but most of its siblings are active, its net input will still be high enough for the unit to turn on.

This can be illustrated by an "energy tour" diagram such as Figure 3.

>>> Insert Figure 3 here. <<<

We use the standard definition for energy from [Hopfield 1982]:

E =Zsi - ssja, (2)
i i<j

where si is the state of the ith unit, 0i is its threshold, and wij is the weight on the connection between

units i and j. Evidence units are assumed to have zero thresholds, so only their states are importanL The

energy gap .AEi of an individual unit i is the amount by which its input exceeds its threshold:

.Ei = E SjWji - Oi (3)

Consider a clique of 40 units in the Rule Space of DCPS. Each rule unit has a threshold of 69, and

receives evidential support from active clause units with a weight of +5 each. Siblings have a weight of

+2, and rivals a weight of -2. One such rule unit is shown in Figure 4. Since these are Boltzmann units,

the probability pi that unit i is in the on state is a function of its energy gap and the current temperature
T:

1
Pi = 1+ --E T (4)

>>> Insert Figure 4 here. <<<

Rule units receive evidential support from the two clause spaces. If there are 8 clause units active in a

rule unit's receptive field, the total evidential support it receives is 40; not enough to put the unit above

2



its threshold of 69. But recall that sibling rule units (those voting for the same rule) have excitatory

connections with a weight of +2. If a unit's siblings are all active, the net input it receives will be

40+ (39 x 2) or 118, putting it well above threshold.

To generate an energy tour diagram such as Figure 3, we start with no rule units active. As rule units

are turned on one at a time, the energy rises since the units are below threshold. Boltzmann machines

are reluctant to move uphill in energy space, so initially the network will be unlikely to want to turn

more units on. But with each new unit forced to turn on, the excitatory effect on sibling units grows.

Eventually the network reaches a point where the activation a unit receives from siblings is equal to the

difference between the evidence and its threshold. This is the peak in the energy graph. The difference

between evidence and threshold is 29 in our example, and the sibling weight is +2, so the peak is reached
when 15 units are active. If we turn on one more unit the energy will begin to fall. Once it is over this

hump the network is eager to turn more units on. Eventually the energy goes negative, and with all 40

rule units turned on the network is sitting at the bottom of an energy well from which it cannot escape if
it is at low temperature. In the second half of an energy tour we reverse direction and turn the rule units

off one by one, bringing the system out of its energy well, over the hump, and eventually back to the
zero energy state. By ramping the number of active units from zero up to forty and then back down to

zero again, we make the graph symmetric, which strengthens the visual impression of the energy wells

we're trying to study.

Energy tours in a DWTA take one of four basic shapes. Examples may be seen in Figure 5. (The curves

are not to scale.) Let e be the amount of external evidence available to each unit, 0 be the unit's threshold,

k the clique size, and w, the excitatory weight between siblings. The four shapes are:

>>> Insert Figure 5 here. <<<

Eager vee: the evidence is above threshold (e > 0). The system is eager to turn units on; energy

decreases as the number of active units goes up. We have a broad, deep energy well, which the

system will naturally fall into given the chance.

Reluctant vee: the evidence is below threshold, but a little sibling influence (fewer than k/2

siblings) is enough to make up the difference. We have e < 0 < e + w,(k - 1)/2. The system is
initially reluctant to turn units on because that causes the energy to go up, but once siblings take it

over the hump it willingly turns on more units. With all units in the clique active the system is in

an energy well whose energy is below zero.

Dimpled peak: with higher thresholds the total energy of the system may remain above zero even
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when all units are on. This happens when more than half of the siblings must be active to boost

each unit above threshold, i.e., e+w,(k- 1) > 0 > e+w,(k- 1)/2. The system can still be trapped

in the small energy well that remains, but only at low temperatures. It is hard to get into this well

in the first place since to do so the system must travel way uphill in energy space. It can do better

by simply turning all its units off. Even if it visits the well, the system may easily bounce out if

the well is shallow.

Smooth peak: when 0 > e+w 3 (k- 1), units will be below threshold even with full sibling support.

In this case there is no energy well, only a peak. The system wants to turn all units off.

In the next section we discuss in detail the task and the structure of the DCPS model. We will then return

to the discussion of energy landscapes and their relevance to DCPS.

3 The Task of DCPS

DCPS matches production rules against a working memory. The working memory contains triples of

symbols, such as (P A B), in a coarse-coded, distributed representation. We use 25 letters, so there are

253 = 15.625 possible triples. The model has 2000 working memory units, each of which has a 6 x 6 x 6

receptive field table, so each unit participates in the representation of 216 distinct triples. Conversely, each

triple is represented by (6/25)3 x 2000 or approximately 28 units. See [Rosenfeld & Touretzky 1988] for

a full discussion of the mathematics of this representation, called a coarse-coded symbol memory.

To store a triple in working memory we turn on the 28 units that code for it, forming a distributed pattern

of activation. Several triples may be stored simultaneously by superimposing their patterns. Working

memory typically contains from two to a dozen triples at a time.

Each DCPS production rule consists of a "left hand side" condition and some "right hand side" actions.

Only the left hand side condition will concern us here. Conditions are pairs of clauses, where each clause

specifies a triple. A single variable =x appears in the first position of each clause. This forces the two

clauses to match triples that both begin with the same letter. A typical set of production rules is:

Rule-i: (-x A B) (-x C D) -- >

Rule-2: (-x E F) (=x G H) -- >

Rule-3: (-x I J) (-x K L) -- >
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Rule-i can match the triples (P A B) and (P C D), or the triples (Q A B) and (Q C D), but it cannot

match (P A B) and (Q C D) since the variable binding constraint would be violated. The same constraint

applies to all rules.

The job of selecting a production rule that matches the current working memory contents is shared by

the rule and bind spaces, which are both DWTA netw-, rks. The rule units only examine the last two

positions of a triple to see if they match the constant part of the rule. Each clause has an evidence pool

of 115 units to examine.2 If a triple is present that matches a particular left hand side clause, there will

be approximately 28 units of evidence visible in that clause space.

At the same time as the rule network is searching for a winning rule, the bind network is searching for

a value for the bound variable. It does this by looking for two working memory triples that both begin

with the same letter.

Consider what happens during a match when working memory contains the following triples. (I have

grouped these six triples in pairs to neatly correspond to the rules they trigger, but in general this isn't

possible because a triple may match any number of rules, and a rule may partially match any number of

triples.)

(P A B) (Q C D)

(Q E F) (P G H)

(R I J) (R K L)

The only correct match in this case is Rule-3 with the variable =x bound to R. But the two individual

DWTA nets do not have this global perspective. Considering rule space in isolation for a moment, it is

possible to satisfy Rule-1 because there is a triple of form (- A B) and a triple of form (- C D). (One

of these triples begins with P and the other with Q, but rule units don't notice that.) It is also possible to

satisfy Rule-2, since there is a triple of form (- E F) and a triple of form (- G H). And Rule-3 can be

satisfied because there is a triple of form (- I J) and a triple of form (- K L). So, in the absence of a

variable binding constraint, all the rules appear to have equal support.

1Thee am 25 possible tples that could match a pattem such as (mx A B), and each triple is represented by 25 units, so one

might expect to have to examine 25 x 28 - 700 units. Bu due o the use of coare codsimil tiples have overlapping

representations, so the total number of units that mut be examined is only (6/25)2 x 2000 or 115.
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Similarly, if we ignore the rules for a moment, we see that there are also three equally well-supported

winners in bind space. It is possible to completely satisfy the P bind units because there are two triples

of form (P - -): likewise the Q and R bind units. Yet we know that the only totally correct match is the

one with R and Rule-3 as the winners.

The rason it's difficult to get the network to find the correct match is that rule and bind spaces are

selecting triples independently from working memory. The constraints that each space imposes on the

match are not being communicated to the. other space.

This problem is solved in DCPS by introducing an attentional mechanism, kaown as clause spaces, to

mediate between the DWTA nets and working memory. Rule and bind units are not allowed to look

directly at the contents of working memory; they look only at the two clause spaces. Each clause space

contains 2000 units with one-one excitatory connections from corresponding working memory units. Due

to strong lateral inhibition, each clause space can only represent a small subset of the working memory

pattern at any one time. The inhibition level within a clause space is cartfuliy set so that by the completion

of a match only about 28 clause units will remain active: just enough to represent one triple. But which

triple should they represent? Clause spaces receive top-down guidance via their connections from the

rule and bind spaces. They use this input to focus on subsets of the working memory pattern that both

the rule and bind spaces appear to be interested in. In order to conclude a .s-cessful match, rule and

bind spaces are forced to agree on which two triples from working memory they wish to see in the clause

spaces. In the sample problem we've been considering, only the selection of (R I J) in the first clause

space and (R K L) in the second can satisfy both a rule hypothesis and a variable binding hypothesis

simultaneously.

4 Dynamics of DCPS

When DCPS begins a rule matching cycle, it starts out at a high temperature, putting its units in essentially

random states. The clause units extract a random subset of the working memory pattern, and the rule and

bind units, although influenced somewhat by the clause units, are also nearly random in their behavior.

After two cycles at a high temperature of 300, the temperature is dropped to a moderate value of 33. This

is where the real matching work takes place. The model performs a stochastic search through the space

of possible rule matches. Coalitions of rule, bind, and clause units form, then break up and later reform

again. If one particular rule starts to become more active, more of its units will turn on; this provides a

positive influence to clause units that support that rule. If tk: clause units can als:o achieve support from

bind units (because there is a triple in the other clause space that begins with the same letter), the clause
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units will be more liktly to remain on, which in turn helps even more rule units in the winning rule's

clique to become active.
It is important to emphasize that the model does not consider individual rules, variable values, or triples

discretely. During the early phases of the match the clause spaces will typically have 40 to 60 units active,

representing a mixture of several different triples. At the same time, there will be several rules partially

active in rule space, and several variable binding hypotheses active in bind space. As the winning rule

and bind cliques grow stronger, they eventually dominate their respective spaces and suppress all rivals,

but this is a complex process due to the two-way interaction with the clause spaces.

4.1 Dynamics with Full Evidence

The model's dynamics are easiest to understand when full evidence is available, in the late phase of the

match, so let's start by examining the energy landscape of rule space when there is ample evidence in

the clause spaces for the winning rule. Assume there are three rules, A, B, and C, with disjoint evidence

populations. The state space of the rule module can be drawn as a cube 40 units on a side. The energy

tour through state space shown in Figure 6 does not include the interior of the cube, but does extend

along each of the major axes.

>>> Insert Figure 6 here. <<<

Suppose that B is the best-supported rule, with evidence 100 (10 connections from active units in each

clause space, with weights of +5, times 2 clauses), and that A has evidence 40 and C has evidence 5.

Under these conditions, the energy tour looks like Figure 7.

>>> Insert Figure 7 here. <<<

The left half of Figure 7 shows the energy curves for hypotheses A, B, and C, when a value of 69 is used

for for the rule unit thresholds. 3 Since the evidence for rule A is a bit below threshold, its curve is of

the "reluctant vee" type. We see some initial reluctance to turn on A units, indicated by a rise in energy,

but this is eventually overcome by sibling support. The evidence for rule B is well above threshold, so

there is no reluctance to tun on B units. The energy goes negative as soon as the first B unit comes on.

Rule C has almost no evidential support; its tiny local energy minimum is due almost entirely to sibling

support.

3A the weights and thresholds in this paper are actual DCPS values, takm from [rouretky & IMinton 1988].
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Two important observations can be made from these curves. First, the energy well for B is considerably

deeper than for A. This means at moderate temperature the model could pop out of A's energy well, but

it is more likely to remain in B's well. The well for C is so shallow, and its energy is so far above zero,

that it is very unstable; th- model is certain to pop out of it at any temperature above zero.

The second observation we can make is that the well for B is somewhat broader than the well for A. This

means that it is easier for the B attractor to capture the model, since its attractor region spans a larger

portion of state space.

The tours we've made for hypotheses A, B, and C correspond to traversing the three orthogonal edges

extending from the origin of a 40 x 40 x 40 cube, as shown in Figure 6. During the stochastic search, A,

B, and C units will be flickering on and off simultaneously, so the model will also visit internal points

of the cube not covered in the energy tour diagram. Therefore we will experiment with some additional

graphic representations of energy landscapes. First, note that hypothesis C gets so little support that we

safely can ignore it and concentrate on A and B. This allows us to focus on just the front face of the

state space cube in Figure 8. In this graph the number of active A units runs from zero to forty along

the vertical axis, and the number of active B units runs from zero to forty along the horizontal axis. The

arrows at each point on the graph show legal state transitions at zero temperature. For example, at the

point where there are are 38 active B units and 3 active A units there are two arrows, pointing down and

to the right. This means there are two states the model could enter next It could either turn off one of the

active A units, or turn on one more B unit, respectively. At nonzero temperatures other state transitions

are possible, corresponding to uphill moves in energy space, but these two remain the most probable.

>>> Insert Figure 8 here. <<<

The points in the upper left and lower right comers of Figure 8 are marked by "Y" shapes. These represent

point attractors at the bottoms of energy wells; the model will not move out of these states unless the

temperature is greater than zero.

A point in state space is said to be within the region of a particular fixedpoint attractor if all legal

transition sequences (at T = 0) from that point lead eventually to the fixedpoint. By looking at the arrows,

the attractor regions of A and B are easily determined. They are outlined in the figure. Note that the

attractor region for B covers more area than the one for A, as predicted by its greater breadth in the energy

tour diagram. Note also that there is a small ridge between the two attractor regions. From starting points

on the ridge the model can end up in either final state.

>>> Insert Figure 9 here. <<<
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While the legal state transition diagram shows us the breadth of various attractor regions, Figure 9 shows

us the depth. The energy well for B is substantially deeper than the well for A. Starting at the point in the

lower left corner where there are zero A units and zero B units active, the energy falls off immediately

when moving in the B direction, but rises initially in the A direction before dropping into a modest energy

well when most of the A units are on. Points in the interior of the diagram, representing a combination

of A and B units active, have higher energy than points along the edges due to the inhibitory connections

between units in rival cliques.

Although DCPS is a Boltzmann machine it does not operate by simulated annealing in the usual sense.

True annealing requires a slow reduction in temperature over many update cycles so the model can

thoroughly search the state space and with high probability end up in the minimum energy state. The

stochastic search in DCPS takes place at a single temperature which has been determined empirically

to be the model's approximate melting point. (The melting point is the temperature at which the model

repeatedly enters shallow energy wells and then escapes. At lower temperatures escape is too difficult;

at higher temperatures the model will not remain trapped if it enters a deep well.) The entire search

takes only a few update cycles; typically less than 10. Therefore, the breadth of energy wells is quite

important, as it determines how likely the model is to wander into particular attractor regions. Once inside

an attractor region, by definition it can reach the bottom by moving strictly downhill.

We can see from Figures 8 and 9 that the attractor for A, although smaller and narrower than the one for

B, is still sizable. This is likely to mislead the model, so that some of the time it will get trapped in the

wrong energy minimum. The fact that there is an attractor for A at all is due largely to sibling support,

since the raw evidence for A is less than the rule unit threshold.

We can eliminate the unwanted energy well for A by raising the rule unit thresholds to a level that

exceeds maximum sibling support. DCPS uses a value of 119. The energy tours for A, B, and C with

high thresholds are shown in the right half of Figure 7. With high thresholds, A is no longer an energy
well. If we turn on all 40 A units and let the model run, it wil turn all of them off again, even at zero

temperature. B is still an energy well, but it is narrower and shallower than before. Also, there is a slight

reluctance to turn B units on initially, since full evidential support by itself is no longer enough to put

a unit above threshold. Once a few B units become active, though, the model quickly ends up in the

attractor region, where it turns on the rest and settles into a global energy minimum.

>>> Insert Figure 10 here. <<<

Figure 10 shows the legal zero-temperature state transitions with the threshold set at 119. We see that

the area of the B attractor is reduced somewhat, but it still covers a sizable portion of state space. The
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attractor for A is gone. There is, however, another attractor, located at the origin where all units are

off. The null hypothesis has become an attractor because the threshold is now higher than the maximum

external evidence, so when very few units are active there is insufficient sibling support for any rule to

win the competition. The only way the model can move downhill in energy space from this point is by

turning all its units off.

>>> Insert Figure 11 here. <<<

The majority of points in state space do not belong uniquely to either of the two attractors, so in theory

the model can reach either one from those points. However, the two choices are not equiprobable. Units

follow the Boltzmann probability distribution, so they are more likely to move in the direction of steepest

descent in energy. As Figure 11 shows, the energy gradient favors attractor B over the null attractor. In

a later section I will introduce a technique for actively avoiding the null attractor.

4.2 Dynamics with Low to Moderate Evidence

There are two reasons why a rule unit may be receiving only low to moderate evidential support from

clause space. The unit may simply have chosen an unlucky 40-clause unit subset for its receptive field, in

which instead of the expected 9-10 active clause units it will see only, say, 6. Sibling support can make

up for this deficit once enough siblings have become active.

But all rule units receive low evidential support initially, for a different reason. Early in the match the

clause units are extracting an essentially random subset of the working memory pattern. There has not

been time yet for the rule and bind units to form coalitions and focus the clause spaces on particular

triples. Therefore, rule units will unavoidably go through a period where they are getting much less

evidence from the clause spaces than they will eventually end up with after the match has concluded

successfully. At the same time, early in the match, the rule units are receiving little sibling support, and

quite a bit of inhibition from competing rules. Thus they are quite likely to be near or below threshold.

>>> Insert Figure 12 here. <<<

The right half of Figure 12 shows an energy tour of the landscape when hypothesis B has evidence 60

rather than 100, and rule thresholds are set at 119. The attractor for B has energy way above zero. This

means it is very unlikely for the model to travel so far uphill in energy space to reach that local energy

minimum. And at a temperature o 33, it is unlikely to stay in that ninimum if it does reach it.

>>> Insert Figure 13 here. <<<
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Figure 13 shows that the attractor for B is very narrow, indicating that it is heavily dependent on sibling

support. The .,actor for the null hypothesis covers most of the state space. We can see from this

diagram that if we start out with high thresholds early in the search, before the clause units have time to

focus their attention and bring in adequate evidence, the model will simply turn all its units off and give

up. Figure 14 shows that giving up is in fact the best thing the model can do. The null hypothesis is the

global energy minimum (zero); the B attractor's energy is quite a bit higher than that

>>> Insert Figure 14 here. <<<

Clearly we want thresholds to be low so rule units can turn on early, and thereby invite more evidence

to appear in clause space. Let's go back to using thresholds of 69 and see what effect that has on energy

space. The energy tours with a threshold of 69 are shown in the left half of Figure 12; the legal state

transitions at zero temperature are shown in Figure 15, and the energy space is mapped in Figure 16.

>>> Insert Figure 15 here. <<<

>>> Insert Figure 16 here. <<<

With low thresholds the attractor for the null hypothesis is negligible, while the attractor for B is of a

healthy size. But we saw earlier that we wanted thresholds to be high to rule out spurious minima, such

as the one for A which has reappeared. This demonstrates a fundamental tension between different needs

of the model with respect to thresholds in DWTA modules:

" We want thresholds to be low so units can become active with just a little evidence visible.

* We want thresholds to be high so that only well-supported hypotheses can be winners.

" We want thresholds to be low so that siblings can help turn a unit on if it receives below-average

evidential support. This is important for counteracting the variance in evidence distribution illus-

trated in Figure 2, and also for supporting tentative hypotheses while they assemble more evidence

in the clause spaces.

" We want thresholds to be high to prevent the "mass delusion" effect, in which the model is captured

in a hypothesis' energy well just because of high sibling support, not external evidence.

In section 6 1 suggest two techniques for resolving these conflicts.
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5 Coarse-Coded DWTA Networks

The bind space in DCPS is similar to rule space: it is organized as a DWTA, it gets its input from the

two clause spaces, and it in turn affects the clause spaces. It contains 25 cliques, one for each of the

letters A through Y, and each clique has 40 members, the same as for rule space. But bind space uses a

coarse coded representation in which each bind unit codes-for three values instead of one. So instead of

25 x 40= 1000 bind units, there are only 333.

The coarse-coded WTA has two advantages. The first is a savings in units without any reduction in the

number of units per clique. The second advantage is that, with a coarse-coded WTA, every hypothesis

is likely to have a few units active, even when one hypothesis dominates the competition. To take the

most extreme example, suppose hypothesis P has won the competition outright, and so there are exactly

40 units active, all of which code for P. Since each unit actually codes for three letters, in addition to

there being 40 P votes affecting the clause spaces, there are also an average of (40 x 2)/24 = 3.3 votes

for each of the other 24 letters. Earlier in the search, before a clear winner has emerged, the bind units

are even more likely to spread the votes around. This seems to help promising hypotheses over the initial

hump of a "reluctant vee" energy landscape.

In a coarse-coded WTA, two units will have an excitatory connection if their receptive fields have at least

one letter in common. If their receptive fields are disjoint they have an inhibitory connection. Given that

each unit codes for three letters, and each letter has a clique of 40 units, each bind unit ends up with

slightly less than 3 x 39 siblings, which is about one third of the entire bind space. But this does not

cause the network to choose three winners. If unit x is in the same clique as y, and unit y is in the same

clique as z, x and z may still be rivals if they have no letters in common. So there is plenty of inhibition

available, and the attractor states of the network are still those in which only the units in a single clique

are active.

Since bind units also have limited-size receptive fields (they look at 240 clause units out of a relevant

population of 1440), they are subject to the same variance in the distribution of evidence as rule units. But

bind units also have a second source of variance, because the three-letter receptive fields of these units

are all different. Units within the clique for the letter P, for example, will experience varying levels of

inhibition from non-P units, since some will view these units as rivals while others view them as siblings

because they have some other letter in common.
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6 Threshold Growing and Corner Clipping

Due to the interaction between rule and clause spaces during the stochastic search, the model goes through

a phase transition from a low evidence to a high evidence phase. We need low thresholds in the low

evidence phase. They should be high enough to weed out totally random hypotheses, yet not so high

as to pose a barrier to hypotheses with the pottal to develop real support. But we do need high

thresholds once the model has begun to assemble evidence and form coalitions, because we only want

strong hypotheses to have below-zero energy wells.

One way to solve this problem is to let the thresholds grow during the simulated annealing process. By

growing the thresholds we are dynamically re-shaping the energy la7. .scape, switching from the left half

of Figure 12 to the right half of Figure 7, or from Figure 15 to Figure 10. The energy well for B remains

because evidence for B is increasing at the same time as the thresholds increase. The energy well for A

disappears because the total evidence available for A is insufficient to maintain it as the match criteria

become more stringent. In other words, by raising the thresholds we are "pulling the rug out from under"

the A attractor while leaving the model time to head toward the B attractor.

Another technique, corner clipping, might be used to prevent the model from selecting the null hypothesis

and tining all its units off. At the conclusion of any successful match there will be 40 rule units active,

all belonging to the same clique. Therefore rule space can be restricted to always have at least R rule

units active, where R is some parameter close to 40. Whenever there are fewer than R rule units active,

the model could be forced to turn on some more units at random. In the final step of the annealing this

restriction would be removed. If there were a valid match, there would be 40 units active. If the model

failed to find a valid match, it would be allowed to turn all its units off; this would be a signal that the

match had been unsuccessful and should be restarted from the beginning.

>>> Insert Figure 17 here. <<<

This technique is called "comer clipping" because establishing a requirement for a minimum number

of active rule units amounts to clipping the origin corner from the state space hypercube, as shown in

Figure 17. The model is never permitted to enter this corner; therefore it can't turn all its units off.

>>> Insert Figure 18 here. <<<

A possible improvement on this idea is to make the boundary reactive, like the bumper on a pinball

machine:4 Whenever the model has turned off one too many units, we kick it away from the boundary by

'Tha analogy was mggeted by LAkendm Shastri
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turning on several extra units at random. Over time the model should eventually find the attractor region

for B, even if that region is small. Figure 18 shows that the gradient of the energy surface favors the B

attractor even outside of what we defined as the strict attractor region, because the barrier prevents the

model from choosing the null hypothesis and the high threshold removes A as an energy well.

7 Experimental Results

The original version of DCPS used the parameters shown in Table I and the amealing schedule of Table 2.

The model ran the match at a temperature of 33, with low thresholds, until the energy dropped below a

certain value. It then dropped the temperature to 0.1 to settle the two DWTA modules and remove noise

from the two clause spaces. In a final verification step called "rebiasing," rule and clause unit thresholds

were increased by 50, and bind unit thresholds by 30.

>>> Insert Table 1 here. <<<

>>> Insert Table 2 here. <<<

The post-match threshold-raising was used to test whether the model was trapped in a deep energy well

representing a valid match, or lying in a local minimum representing only a partial match. Rebiasing

changed the shape of the energy landscape as shown in Figure 19. If the model was trapped in the shallow

well of a local minimum, raising the thresholds left it on a slope; it then "rolled downhill" by turing all

its units off. If the model was in a global minimum, rebiasing left it trapped in a well that had positive

energy but very steep sides, so it remained tapped in that state.

>>> Insert Figure 19 here. <<<

This scheme worked well for simple match problems, but it did not do well on complicated problems in

which there were many partial matches, hence too many confusing local minilma The example given at

the beginning of this paper is one of those hard match problems. With six triples in working memory,

there are nine possible pairs of triples the clause spaces might reasonably extract.5 One pair yields the

correct match. But four other pairs have moderately deep energy minim, corresponding to partial matches:

1. (P A B) and (Q C D), cho mg Rule-1 as the rule and a combination of P and Q as the variable

value. This violates the unique variable binding constraint.

-The clause spa don't tually extract triples as whole objects, though. Each of the 200 units operates independently, so

clause space usually contains a mixture of partial representations for several triples at once.
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2. (P A B) and (P G H), choosing a combination of Rule-1 and Rule-2 as the winning rule, and a

variable value of P. This violates the constraint that there must be a unique winner in Rule space.

Each rule gets support from only one of the two clause spaces.

3. (Q E F) and (P G H), choosing Rule-2 and a combination of P and Q, violating the unique variable

binding constraint.

4. (Q E F) and (Q C D), choosing a combination of Rule-2 and Rule-i, with Q as the variable value,

violating the unique rule constraint.

When the model failed to match correctly, frequently this was becaue it ended up trapped in one of the

partial minima, and after rebiasing, turned all its units off. One reason for this failure may be that the

partial minima interacted synergistically, e.g., Rule-I and Rule-2 both support the same two bindings (P

and Q), and conversely each of those bindings partially supports both Rule-i and Rule-2. The correct

winners, Rule-3 and R, have nothing in common with any other match candidate, so there is no synergy

for them to capitalize on.

The model did solve the match problem correctly some of the time, but its success rate was rather low,

averaging 32% over five experiments. In each experiment the model was run overnight for at least 400

annealings. The five experiments differed only in the wiring pattern between the rule and bind spaces and

the two clause spaces. Units in rule and bind space are wired to randomly-chosen subsets of the relevant

clause space populations each time the model is initialized. Different wiring patterns result in slightly

different success rates for any particular match problem.

A modified version of DCPS was constructed to see how threshold growing and comer clipping could

improve the search dynamics. Initially, the comer clipping parameter was set to keep a minimum of 40

units active in each WTA space, and threshold growing was used to gradually raise the rule, bind, and

clause unit thresholds from their initial values to somewhat higher values. The other model parameters

(i.e., connection strengths and annealing temperatures) were unchanged. A run of five match experiments

gave an average performance level of 35%, which is not a statistically significant improvement.

Observing the model in light of the analysis of section 4 suggested that changes to some of its other

parameters might make it possible to take advantage of threshold growing. Consequently, the model was

re-tuned, resulting in different choices for rule unit thresholds, lateral excitation and inhibition levels, and

annealing temperatures, as shown in Table 3. The revised annealing schedule is shown in Table 4. The

result was an average performance in five experiments of 45%, a clear improvement over the 32% the

original model achieved.
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Comer clipping was inapplicable in the new model because, with the lower thresholds, there were always

more than 40 rule and bind units active. Another series of experiments was performed with high initial

thresholds, relying on cone clipping to keep the model from turning all its units off before adequate

evidence could be assembled in the clause spaces to support some hypothesis. The model did poorly

under these conditions because it was forced to turn on lots of units for unsupported hypotheses (in order

to have at least 40 units on). Inhibitory connections between units in rival cliques therefore caused all the

WTA units to receive substantial inhibition, so the model never settled into an atactor for any hypothesis.

In another experiment, instead of turning on units at random to keep the total number of active WTA units

above 40, the model was modified to turn on the inactive unit wi'- the highest energy gap. This turned

out to be worse than the random strategy, because once a WTA net got itself into a partial minimum, it

could not easily get out again by turning units off. Every time the number of active units went below 40,

the unit with the highest energy gap would be one of the members of the clique the model was trying to

abandon, so it would be forced back into the weak attractor it was trying to leave.

Apparently, for comer clipping to be useful in high dimensional spaces one must push away from the

boundary in a random direction, and omit the inhibitory connections between units in rival WTA cliques.

Removing lateral inhibition in WTA space should not eliminate its competitive dynamics, because lateral

inhibition in the clause spaces would prevent multiple cliques from simultaneously assembling enough

evidence for full support. This hypothesis has not been pursued.

8 Discussion

Tuning DCPS is a painstaking task, but one that would have been impossible without visualization tools.

The first visualization technique used was the basic state display. The model contains more than 6500

units, all of whose states can be observed simultaneously throughout the stochastic search. Monitoring

the units' collective states and the model's energy level over time is an easy way to recognize when it

has undergone a phase transition or bounced out of a local minimum. But just watching these parameters

is not enough to fine tune the weights and thresholds that govern the model's complex dynamic behavior.

More sophisticated visualization tools, such as energy tour diagrams and legal state transition diagrams,

are necessary.

The three types of diagram introduced in this paper complement each other. Energy tour diagrams help us

understand the nature of particular fixedpoints: are their attractor regions easy to enter, or is there some

energy barrier? How high is the barrier? How deep is the energy well on the other side?

Legal state transition diagrams serve as a map of state space, showing the size of attractor regions and

17



the places in state space where competing attractors inteMct. Energy surface diagrams show the depth as

well as the breadth of attractor regions, and the gradient allows us to judge the probabilities of particular

state transitions. Studying these diagrams inspired the threshold growing and comer clipping techniques

described in this paper.

It should be stressed that the stochastic search DCPS performs is not truly annealing, since all the matching

work is done at a single temperature and the model settles extremely quickly. The matching portion of

the "annealing" schedule requires just ten cycles. Surely the model's performance could be improved by

adopting a much longer annealing period with a gradual temperature reduction, but since rapid settling is

also important in DCPS, optimal performance on the trickiest match cases was sacrificed for efficiency.

The retuning and introduction of threshold growing resulted in improved performance without lengthening

the annealing period or in any way increasing the model's computational workload.

Another important observation about this work, due to Ralph Linsker (personal communication), is that it

shows that an annealing process can involve more parameters than just temperature. Threshold growing

dynamically changes the shape of the energy landscape. In other words, the model shifts from one

annealing problem to another as its thresholds change. Modifying the energy landscape in this way

should give better control of the search than would varying temperature alone.
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Figure Captions

Fig. 1. The five modules comprising DCPS, the Distributed Connectionist Production System.

Fig. 2. Percent of DCPS rule units with a given number of active clause units in their receptive fields

(out of 40 clause units total), at the completion of a successful match. About 18% of rule units will have

10 active clause units; 17% will have 9 units; 13.5% will have 8 units; 15% will have 7 or fewer units.

This curve was generated from Equation 1.

Fig. 3. A tour through the energy landscape of a DWTA with one clique of 40 units. Moving along the

x axis, the number of active units goes from zero up to 40 and then back down to zero. The y axis is

energy. The cusp in the middle of the curve is due to the abrupt switch from turing units on to turning

them off.

Fig. 4. One rule unit in a clique of 40.

Fig. 5. The four basic shapes of an energy tour diagram.

Fig. 6. An energy tour that follows the axes of the state space cube. This tour considers only one rule

unit clique as active at a time, so the internal points of the cube are not visited.

Fig. 7. • Energy tours for three rule cliques with varying amounts of evidence. Left side: low rule unit

thresholds; right side: high thresholds.

Fig. 8. Legal state transitions at zero temperature, with low thresholds.

Fig. 9. Energy of the model with various combinations of A and B units active. Attractor regions are

outlined.

Fig. 10. Legal transitions at zero temperature when rule unit thresholds are set at 119, and the evidence

for A is 40 and for B 100.

Fig. 11. The energy surface for rule units with thresholds set at 119, where evidence for A is 40 and B

100.

Fig. 12. Energy tours when the best-supported rule clique has evidence 60 instead of 100. Left: low
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thresholds; right: high thresholds.

Fig. 13. Legal state transitions when the best-supported clique has evidence 60, and thresholds are high.

Fig. 14. Energy surface when the best-supported clique has evidence 60, and thresholds are high.

Fig. 15. Legal state transitions when the best-supported clique has evidence 60, and thresholds are low.

Fig. 16. Energy surface when the best-supported clique has evidenco 60, and thresholds are low.

Fig. 17. Clipping the origin corner from the state space cube forces the model to keep at least R units

active at all times. This prevents it from turning all its units off.

Fig. 18. Energy surface with corne clipping. The pinball bumper effect causes the model to rebound

off the barrier by turning on extra units at random.

Fig. 19. "Rebiasing" (raising thresholds) changes the shape of the energy landscape.

Table Captions

Table 1. Weight and threshold values used in the original DCPS model.

Table 2. Annealing schedule from the original DCPS model.

Table 3. Weight and threshold values for the modified version of DCPS incorporating threshold growing.

Table 4. Modified annealing schedule incorporating threshold growing.
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Figure 14:
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Evidence: A-40, B-n60. Threshold -69.

Figure 16:
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Evidence: A=40, B=60. Threshold =119.

Figwe 17:
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Evidence: A-40, B-60. Threshold -119.

Figur 18:
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Clause unit threshold 901

Clause Unit WM input 900

Clause unit lateral inhibition -2

Clause wnit rule weight 5

Clause unit bind wieght 7

Rule unit threshold 69

Rule unit sibling weight 2

Rule unit rival weight -2

Rule unit clause weight 5

Bind unit threhold 63

Bind unit sibling weight 1

Bina unit rival weight -2

Bind unit clause weight 7

Table 1:

Rule Bind Clause

Threshold Threshold Threshold

Step # Cycles Temperature Increment Increment Increment

Randomize 2 300

Match 10 33 0 0 0

Settle 3 0.1 0 0 0

Rebius 2 0.1 +50 +30 +50

Table 2:
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Clause unit threshold 901

Clause uit WM input 900
Clause unit lateral inhibition -2

Clause unit rule weight 5
Clause unit bind wieght 7

Rule unit threshold 29

Rule unit sibling weight 1

Rule unit rival weight -1

Rule unit clause weight 5

Bind unit threshold 63

Bind unit sibling weight 1

Bind unit rival weight -2

Bind unit clause weight 7

Table 3:
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Rule Bind Clause

Threshold Threshold Threshold

Step # Cycles Temperature Increment Increment Increment

Randomize 2 300

Match 6 30 0 0 0

Match 2 30 +5 +5 +15

Match 2 30 +10 +10 +30

Settle 2 0.1 +10 +10 -30

Rebias 2 0.1 +50 +30 +50

Table 4:
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